Some Web Oriented Applications of FAUST

Y. Orlarey, D. Fober, S. Letz, R. Michon

GRAME - Centre National de Création Musicale

Journée Web des Fonctions, Grame, 27 juin 2012

1-Introduction

Introduction
What is FAUST ?

Introduction
What is FAUST ?

FAUST stands for Functional AUdio STream:

Introduction
What is FAUST ?

FAUST stands for Functional AUdio STream:
m FAUST is a:

» DSL for real-time audio signal processing and synthesis.
» based on a purely functional and synchrounous approach.

Introduction
What is FAUST ?

FAUST stands for Functional AUdio STream:
m FAUST is a:

» DSL for real-time audio signal processing and synthesis.
» based on a purely functional and synchrounous approach.
m It can be used to develop:

» audio effects,
» sound synthesizers
> real-time applications processing signals.

Introduction
What is FAUST ?

FAUST stands for Functional AUdio STream:
m FAUST is a:

» DSL for real-time audio signal processing and synthesis.
» based on a purely functional and synchrounous approach.

m It can be used to develop:
» audio effects,
» sound synthesizers
> real-time applications processing signals.
m Who uses FAUST ?
» Developers of audio applications and plugins,

» Sound engineers and musical assistants
» Researchers in Computer Music

Introduction

Main caracteristics

Introduction

Main caracteristics

FAUST is based on several design principles:

m High-level Specification language

Introduction

Main caracteristics

FAUST is based on several design principles:

m High-level Specification language

m Simple and well defined formal semantics

Introduction

Main caracteristics

FAUST is based on several design principles:

m High-level Specification language
m Simple and well defined formal semantics

m Expressive, block-diagram oriented, textual syntax

Introduction

Main caracteristics

FAUST is based on several design principles:

m High-level Specification language

m Simple and well defined formal semantics

m Expressive, block-diagram oriented, textual syntax
[

Efficient sample level processing

Introduction

Main caracteristics

FAUST is based on several design principles:

High-level Specification language

Simple and well defined formal semantics

[
[
m Expressive, block-diagram oriented, textual syntax
m Efficient sample level processing

[

Fully compiled code

Introduction

Main caracteristics

FAUST is based on several design principles:

m High-level Specification language

m Simple and well defined formal semantics

m Expressive, block-diagram oriented, textual syntax
m Efficient sample level processing

m Fully compiled code

[

Automatic parallelization

Introduction

Main caracteristics

FAUST is based on several design principles:

High-level Specification language
Simple and well defined formal semantics

Expressive, block-diagram oriented, textual syntax

[
[
[
m Efficient sample level processing
m Fully compiled code

m Automatic parallelization

[

Embeddable code (no runtime dependencies, no garbage
collection, constant memory and CPU footprint)

Introduction

Main caracteristics

FAUST is based on several design principles:

High-level Specification language

Simple and well defined formal semantics
Expressive, block-diagram oriented, textual syntax
Efficient sample level processing

Fully compiled code

Automatic parallelization

Embeddable code (no runtime dependencies, no garbage
collection, constant memory and CPU footprint)

Easy deployment : single code multiple targets (from VST
plugins to iPhone or standalone applications)

Introduction
Example of FAUST program

.

Fichier Edition Affichage hercher Outils Documents Aide
& g ouvrir E"Enregistrer = & Annuler t Q

mixervoice.dsp ¥

1 // Simple 1-voice mixer with mute button, volume control
2 // and stereo pan

3

4 process = vgroup("voice", mute : amplify : pan);

5

6 mute = #*(1l-checkbox("[3]mute"));

7 amplify = *(wvslider("[2]gain", @, @, 1, 8.01));

8 pan = _ <t *(p), *(1-p)

9 with {

10 p = nentry("[1l]pan[style:knob]", 0.5, @, 1, 0.1);
11 }i

12

Faust » | Largeur des tabulations: 4 = Lig 12, Col1 INS

Figure: Source code of a simple mixer channel Fi
igure:

Resulting
application

Introduction

Semantics

Introduction

Semantics

A FAUST program describes a signal processor :

Introduction

Semantics

A FAUST program describes a signal processor :

m A (periodically sampled) signal is a time to samples function:
» S =N — Z (int signals)
» S=N — R (float signals)

Introduction

Semantics

A FAUST program describes a signal processor :

m A (periodically sampled) signal is a time to samples function:
» S =N — Z (int signals)
» S=N — R (float signals)

m A signal processor is a signals to signals function:
» P=S"—S™m

Introduction

Semantics

A FAUST program describes a signal processor :

m A (periodically sampled) signal is a time to samples function:
» S=N — Z (int signals)
» S=N — R (float signals)
m A signal processor is a signals to signals function:
» P=S"— S™
m Everything in FAUST is a signal processor :
» +:S2 5 SteP,
» 3.14:S° St epP,...,

Introduction

Semantics

A FAUST program describes a signal processor :

m A (periodically sampled) signal is a time to samples function:
» S=N — Z (int signals)
» S=N — R (float signals)
m A signal processor is a signals to signals function:
» P=S"—S"
m Everything in FAUST is a signal processor :
» +:S2 5 SteP,
» 3.14:S° St epP,...,
m Programming in FAUST is essentially combining signal
processors :
»{: , <t > "} CPxP-P

Block-Diagram Algebra

Programming by patching

CE

Ficure: the Mooc modular svnthesizer

Block-Diagram Algebra

Faust syntax is based on a block diagram algebra

5 Composition Operators

(A,B) parallel composition
(A:B) sequential composition
(A<:B) split composition

(A:>B) merge composition

(A™B) recursive composition

2 Constants

m ! cut

m _ wire

Block-Diagram Algebra

. o

[==

1 |
par: (10,%) seq: ((x,/):+4)

split: ((10,20) <: (+,%,/))
merge: ((10,20,30,40) :> *)

\\\\\\\\\\\\\\\\\\\\\\

1103515245

- ProCEsS — — — — — = == - - -
-

©
L.
8
o)
o0
<
S
Q)
-
)
.©
()
x
9]
o
m

rec: +(12345) ~ *(1103515245)

Faust Architecture System

Motivations

Faust Architecture System

Motivations

m Easy deployment (one Faust code, multiple audio targets) is
an essential feature of the Faust project

Faust Architecture System

Motivations

m Easy deployment (one Faust code, multiple audio targets) is
an essential feature of the Faust project

m This is why Faust programs say nothing about audio drivers or
GUI toolkits to be used.

Faust Architecture System

Motivations

m Easy deployment (one Faust code, multiple audio targets) is
an essential feature of the Faust project

m This is why Faust programs say nothing about audio drivers or
GUI toolkits to be used.

m There is a separation of concerns between the audio
computation itself, and its usage.

world.

Faust Architecture System

ghame

The architecture file describes how to connect the audio computation to the exte

1
=

DA

Faust Architecture System

Examples of supported architectures

m Audio plugins : m Audio drivers :
» LADSPA > Jack
» DSSI > Alsa
> LV2 > CoreAudio
> Max/MSP m Graphic User Interfaces :
» VST » QT
> PD > GTK
» CSound > 0S5
> Supercollider m Other User Interfaces :
> Pure
» Chuck » 0SC
» Octave > HTTPD
> Flash

2-HT TP based Audio Apps

3-Online Compiler

4-Javascript backend

5-Perspectives

Perspectives

Perspectives

m FAUST
» Faciliter la publication Web
» Faciliter la réutilisation (a la javascript)
» Utiliser des URL pour les composants et les librairies

Perspectives

m FAUST

» Faciliter la publication Web

» Faciliter la réutilisation (a la javascript)

» Utiliser des URL pour les composants et les librairies
m Architecture Httpd

» Développer I'interface utilisateur (HTML5/JS/CCS)

» Différentier les accés administrateur et public

> Integrer des QR Codes

Perspectives

m FAUST

» Faciliter la publication Web

» Faciliter la réutilisation (a la javascript)

» Utiliser des URL pour les composants et les librairies
m Architecture Httpd

» Développer I'interface utilisateur (HTML5/JS/CCS)

» Différentier les accés administrateur et public

> Integrer des QR Codes

m Compilateur en ligne

» Séparer le compilateur en ligne et le site
» Développer une API pour le compilateur en ligne
> Intégrer la compilation vers Javascript

	Introduction
	Block-Diagram Algebra
	HTTPD
	Online Compiler
	Javascript backend
	Perspectives

