
Some Web Oriented Applications of FAUST

Y. Orlarey, D. Fober, S. Letz, R. Michon

GRAME – Centre National de Création Musicale

Journée Web des Fonctions, Grame, 27 juin 2012



1-Introduction



Introduction
What is FAUST ?

FAUST stands for Functional AUdio STream:

FAUST is a :
I DSL for real-time audio signal processing and synthesis.
I based on a purely functional and synchrounous approach.

It can be used to develop:
I audio effects,
I sound synthesizers
I real-time applications processing signals.

Who uses FAUST ?
I Developers of audio applications and plugins,
I Sound engineers and musical assistants
I Researchers in Computer Music



Introduction
What is FAUST ?

FAUST stands for Functional AUdio STream:

FAUST is a :
I DSL for real-time audio signal processing and synthesis.
I based on a purely functional and synchrounous approach.

It can be used to develop:
I audio effects,
I sound synthesizers
I real-time applications processing signals.

Who uses FAUST ?
I Developers of audio applications and plugins,
I Sound engineers and musical assistants
I Researchers in Computer Music



Introduction
What is FAUST ?

FAUST stands for Functional AUdio STream:

FAUST is a :
I DSL for real-time audio signal processing and synthesis.
I based on a purely functional and synchrounous approach.

It can be used to develop:
I audio effects,
I sound synthesizers
I real-time applications processing signals.

Who uses FAUST ?
I Developers of audio applications and plugins,
I Sound engineers and musical assistants
I Researchers in Computer Music



Introduction
What is FAUST ?

FAUST stands for Functional AUdio STream:

FAUST is a :
I DSL for real-time audio signal processing and synthesis.
I based on a purely functional and synchrounous approach.

It can be used to develop:
I audio effects,
I sound synthesizers
I real-time applications processing signals.

Who uses FAUST ?
I Developers of audio applications and plugins,
I Sound engineers and musical assistants
I Researchers in Computer Music



Introduction
What is FAUST ?

FAUST stands for Functional AUdio STream:

FAUST is a :
I DSL for real-time audio signal processing and synthesis.
I based on a purely functional and synchrounous approach.

It can be used to develop:
I audio effects,
I sound synthesizers
I real-time applications processing signals.

Who uses FAUST ?
I Developers of audio applications and plugins,
I Sound engineers and musical assistants
I Researchers in Computer Music



Introduction
Main caracteristics

FAUST is based on several design principles:

High-level Specification language

Simple and well defined formal semantics

Expressive, block-diagram oriented, textual syntax

Efficient sample level processing

Fully compiled code

Automatic parallelization

Embeddable code (no runtime dependencies, no garbage
collection, constant memory and CPU footprint)

Easy deployment : single code multiple targets (from VST
plugins to iPhone or standalone applications)



Introduction
Main caracteristics

FAUST is based on several design principles:

High-level Specification language

Simple and well defined formal semantics

Expressive, block-diagram oriented, textual syntax

Efficient sample level processing

Fully compiled code

Automatic parallelization

Embeddable code (no runtime dependencies, no garbage
collection, constant memory and CPU footprint)

Easy deployment : single code multiple targets (from VST
plugins to iPhone or standalone applications)



Introduction
Main caracteristics

FAUST is based on several design principles:

High-level Specification language

Simple and well defined formal semantics

Expressive, block-diagram oriented, textual syntax

Efficient sample level processing

Fully compiled code

Automatic parallelization

Embeddable code (no runtime dependencies, no garbage
collection, constant memory and CPU footprint)

Easy deployment : single code multiple targets (from VST
plugins to iPhone or standalone applications)



Introduction
Main caracteristics

FAUST is based on several design principles:

High-level Specification language

Simple and well defined formal semantics

Expressive, block-diagram oriented, textual syntax

Efficient sample level processing

Fully compiled code

Automatic parallelization

Embeddable code (no runtime dependencies, no garbage
collection, constant memory and CPU footprint)

Easy deployment : single code multiple targets (from VST
plugins to iPhone or standalone applications)



Introduction
Main caracteristics

FAUST is based on several design principles:

High-level Specification language

Simple and well defined formal semantics

Expressive, block-diagram oriented, textual syntax

Efficient sample level processing

Fully compiled code

Automatic parallelization

Embeddable code (no runtime dependencies, no garbage
collection, constant memory and CPU footprint)

Easy deployment : single code multiple targets (from VST
plugins to iPhone or standalone applications)



Introduction
Main caracteristics

FAUST is based on several design principles:

High-level Specification language

Simple and well defined formal semantics

Expressive, block-diagram oriented, textual syntax

Efficient sample level processing

Fully compiled code

Automatic parallelization

Embeddable code (no runtime dependencies, no garbage
collection, constant memory and CPU footprint)

Easy deployment : single code multiple targets (from VST
plugins to iPhone or standalone applications)



Introduction
Main caracteristics

FAUST is based on several design principles:

High-level Specification language

Simple and well defined formal semantics

Expressive, block-diagram oriented, textual syntax

Efficient sample level processing

Fully compiled code

Automatic parallelization

Embeddable code (no runtime dependencies, no garbage
collection, constant memory and CPU footprint)

Easy deployment : single code multiple targets (from VST
plugins to iPhone or standalone applications)



Introduction
Main caracteristics

FAUST is based on several design principles:

High-level Specification language

Simple and well defined formal semantics

Expressive, block-diagram oriented, textual syntax

Efficient sample level processing

Fully compiled code

Automatic parallelization

Embeddable code (no runtime dependencies, no garbage
collection, constant memory and CPU footprint)

Easy deployment : single code multiple targets (from VST
plugins to iPhone or standalone applications)



Introduction
Main caracteristics

FAUST is based on several design principles:

High-level Specification language

Simple and well defined formal semantics

Expressive, block-diagram oriented, textual syntax

Efficient sample level processing

Fully compiled code

Automatic parallelization

Embeddable code (no runtime dependencies, no garbage
collection, constant memory and CPU footprint)

Easy deployment : single code multiple targets (from VST
plugins to iPhone or standalone applications)



Introduction
Example of FAUST program

Figure: Source code of a simple mixer channel
Figure:
Resulting
application



Introduction
Semantics

A FAUST program describes a signal processor :

A (periodically sampled) signal is a time to samples function:
I S = N→ Z (int signals)
I S = N→ R (float signals)

A signal processor is a signals to signals function:
I P = Sn → Sm

Everything in FAUST is a signal processor :
I + : S2 → S1 ∈ P,
I 3.14 : S0 → S1 ∈ P, . . .,

Programming in FAUST is essentially combining signal
processors :

I {: , <: :> ~ } ⊂ P× P→ P



Introduction
Semantics

A FAUST program describes a signal processor :

A (periodically sampled) signal is a time to samples function:
I S = N→ Z (int signals)
I S = N→ R (float signals)

A signal processor is a signals to signals function:
I P = Sn → Sm

Everything in FAUST is a signal processor :
I + : S2 → S1 ∈ P,
I 3.14 : S0 → S1 ∈ P, . . .,

Programming in FAUST is essentially combining signal
processors :

I {: , <: :> ~ } ⊂ P× P→ P



Introduction
Semantics

A FAUST program describes a signal processor :

A (periodically sampled) signal is a time to samples function:
I S = N→ Z (int signals)
I S = N→ R (float signals)

A signal processor is a signals to signals function:
I P = Sn → Sm

Everything in FAUST is a signal processor :
I + : S2 → S1 ∈ P,
I 3.14 : S0 → S1 ∈ P, . . .,

Programming in FAUST is essentially combining signal
processors :

I {: , <: :> ~ } ⊂ P× P→ P



Introduction
Semantics

A FAUST program describes a signal processor :

A (periodically sampled) signal is a time to samples function:
I S = N→ Z (int signals)
I S = N→ R (float signals)

A signal processor is a signals to signals function:
I P = Sn → Sm

Everything in FAUST is a signal processor :
I + : S2 → S1 ∈ P,
I 3.14 : S0 → S1 ∈ P, . . .,

Programming in FAUST is essentially combining signal
processors :

I {: , <: :> ~ } ⊂ P× P→ P



Introduction
Semantics

A FAUST program describes a signal processor :

A (periodically sampled) signal is a time to samples function:
I S = N→ Z (int signals)
I S = N→ R (float signals)

A signal processor is a signals to signals function:
I P = Sn → Sm

Everything in FAUST is a signal processor :
I + : S2 → S1 ∈ P,
I 3.14 : S0 → S1 ∈ P, . . .,

Programming in FAUST is essentially combining signal
processors :

I {: , <: :> ~ } ⊂ P× P→ P



Introduction
Semantics

A FAUST program describes a signal processor :

A (periodically sampled) signal is a time to samples function:
I S = N→ Z (int signals)
I S = N→ R (float signals)

A signal processor is a signals to signals function:
I P = Sn → Sm

Everything in FAUST is a signal processor :
I + : S2 → S1 ∈ P,
I 3.14 : S0 → S1 ∈ P, . . .,

Programming in FAUST is essentially combining signal
processors :

I {: , <: :> ~ } ⊂ P× P→ P



Block-Diagram Algebra
Programming by patching

Figure: the Moog modular synthesizer



Block-Diagram Algebra
Faust syntax is based on a block diagram algebra

5 Composition Operators

(A,B) parallel composition

(A:B) sequential composition

(A<:B) split composition

(A:>B) merge composition

(A~B) recursive composition

2 Constants

! cut

_ wire



Block-Diagram Algebra

par: (10,*)

split: ((10,20) <: (+,*,/))

seq: ((*,/):+)

merge: ((10,20,30,40) :> *)



Block-Diagram Algebra

rec: +(12345) ~ *(1103515245)



Faust Architecture System
Motivations

Easy deployment (one Faust code, multiple audio targets) is
an essential feature of the Faust project

This is why Faust programs say nothing about audio drivers or
GUI toolkits to be used.

There is a separation of concerns between the audio
computation itself, and its usage.



Faust Architecture System
Motivations

Easy deployment (one Faust code, multiple audio targets) is
an essential feature of the Faust project

This is why Faust programs say nothing about audio drivers or
GUI toolkits to be used.

There is a separation of concerns between the audio
computation itself, and its usage.



Faust Architecture System
Motivations

Easy deployment (one Faust code, multiple audio targets) is
an essential feature of the Faust project

This is why Faust programs say nothing about audio drivers or
GUI toolkits to be used.

There is a separation of concerns between the audio
computation itself, and its usage.



Faust Architecture System
Motivations

Easy deployment (one Faust code, multiple audio targets) is
an essential feature of the Faust project

This is why Faust programs say nothing about audio drivers or
GUI toolkits to be used.

There is a separation of concerns between the audio
computation itself, and its usage.



Faust Architecture System
The architecture file describes how to connect the audio computation to the external
world.

DSP code

User Interface 
Module

Audio Driver Module

User Interface 
Module

Audio Driver Module

DSP code



Faust Architecture System
Examples of supported architectures

Audio plugins :
I LADSPA
I DSSI
I LV2
I Max/MSP
I VST
I PD
I CSound
I Supercollider
I Pure
I Chuck
I Octave
I Flash

Audio drivers :
I Jack
I Alsa
I CoreAudio

Graphic User Interfaces :
I QT
I GTK
I iOS5

Other User Interfaces :
I OSC
I HTTPD



2-HTTP based Audio Apps



3-Online Compiler



4-Javascript backend



5-Perspectives



Perspectives

FAUST
I Faciliter la publication Web
I Faciliter la réutilisation (à la javascript)
I Utiliser des URL pour les composants et les librairies

Architecture Httpd
I Développer l’interface utilisateur (HTML5/JS/CCS)
I Différentier les accès administrateur et public
I Integrer des QR Codes

Compilateur en ligne
I Séparer le compilateur en ligne et le site
I Développer une API pour le compilateur en ligne
I Intégrer la compilation vers Javascript



Perspectives

FAUST
I Faciliter la publication Web
I Faciliter la réutilisation (à la javascript)
I Utiliser des URL pour les composants et les librairies

Architecture Httpd
I Développer l’interface utilisateur (HTML5/JS/CCS)
I Différentier les accès administrateur et public
I Integrer des QR Codes

Compilateur en ligne
I Séparer le compilateur en ligne et le site
I Développer une API pour le compilateur en ligne
I Intégrer la compilation vers Javascript



Perspectives

FAUST
I Faciliter la publication Web
I Faciliter la réutilisation (à la javascript)
I Utiliser des URL pour les composants et les librairies

Architecture Httpd
I Développer l’interface utilisateur (HTML5/JS/CCS)
I Différentier les accès administrateur et public
I Integrer des QR Codes

Compilateur en ligne
I Séparer le compilateur en ligne et le site
I Développer une API pour le compilateur en ligne
I Intégrer la compilation vers Javascript



Perspectives

FAUST
I Faciliter la publication Web
I Faciliter la réutilisation (à la javascript)
I Utiliser des URL pour les composants et les librairies

Architecture Httpd
I Développer l’interface utilisateur (HTML5/JS/CCS)
I Différentier les accès administrateur et public
I Integrer des QR Codes

Compilateur en ligne
I Séparer le compilateur en ligne et le site
I Développer une API pour le compilateur en ligne
I Intégrer la compilation vers Javascript


	Introduction
	Block-Diagram Algebra
	HTTPD
	Online Compiler
	Javascript backend
	Perspectives

